AI-assisted mapping of for OSM

Anna Zanchetta

Open Mapping Hub Asia-Pacific

WEBINAR

12/13/2024

Introduction






fAIr








https://fair.hotosm.org/





What is affecting fAIr’s performance?

RGB from OAM








Open Aerial Map

Labels from OSM








Preprocessing in fAIr

Dataset

Urban regions 25
Countries 21
Zoom levels 19, 20, 21
N. images 8400
(~350 per region)
Images size 256x256
Resolution cm

Locations

Degree of urbanity

Rural


Desa Kulaba

[Indonesia]

Peri-urban


Ggaba

[Uganda]

Urban


Bogota

[Colombia]

Refugee camp


Kakuma

[Kenya]

Roof cover type

Shingles


Silvania

[Brasil]

Metal


Ngaoundere

[Cameroon]

Cement


Melbourne

[Australia]

Mixed


Kutupalong

[Bangladesh]

Urban density

Dense


Montevideo

[Uruguay]

Sparse


Gornja Rijeka

[Croatia]

Grid


Quincy

[USA]

Analysis & Results

Metrics









Source: https://metrics-reloaded.dkfz.de/metric-library

Metrics









Source: https://metrics-reloaded.dkfz.de/metric-library

Training

Urban regions all (25)
N. of epochs 20
Batch sizes 4
(2, 4, 8, 16)
Accuracy metrics 5
Categorical accuracy, Precision,
Recall, F1 Score, IoU



Urbanity

Roof type

Density


Banyuwangi

[Indonesia]


Banyuwangi

[Indonesia]


Banyuwangi

[Indonesia]


Banyuwangi

[Indonesia]


Pallaby, Dhaka

[Bangladesh]


Pallaby, Dhaka

[Bangladesh]


Pallaby, Dhaka

[Bangladesh]


Pallaby, Dhaka

[Bangladesh]


Denver

[USA]


Denver

[USA]


Pergamino

[Argentina]


Pergamino

[Argentina]


Kakuma

[Kenya]


Kakuma

[Kenya]

Future



Alternative models

Other features

THANK YOU






fair.hotosm.org/
github.com/hotosm/fAIr-utilities
en.osm.town/@ciupava