Anna Zanchetta
Open Mapping Hub Asia-Pacific
WEBINAR
12/13/2024
fAIr
What is affecting fAIr’s performance?
RGB from OAM
Open Aerial Map
Labels from OSM
Preprocessing in fAIr
Urban regions | 25 |
Countries | 21 |
Zoom levels | 19, 20, 21 |
N. images | 8400 (~350 per region) |
Images size | 256x256 |
Resolution | cm |
Locations
Degree of urbanity
Rural
Desa Kulaba
[Indonesia]
Peri-urban
Ggaba
[Uganda]
Urban
Bogota
[Colombia]
Refugee camp
Kakuma
[Kenya]
Roof cover type
Shingles
Silvania
[Brasil]
Metal
Ngaoundere
[Cameroon]
Cement
Melbourne
[Australia]
Mixed
Kutupalong
[Bangladesh]
Urban density
Dense
Montevideo
[Uruguay]
Sparse
Gornja Rijeka
[Croatia]
Grid
Quincy
[USA]
Metrics
Metrics
Training
Urban regions | all (25) |
N. of epochs | 20 |
Batch sizes | 4 (2, 4, 8, 16) |
Accuracy metrics | 5 Categorical accuracy, Precision, Recall, F1 Score, IoU |
Urbanity
Roof type
Density
Banyuwangi
[Indonesia]
Banyuwangi
[Indonesia]
Banyuwangi
[Indonesia]
Banyuwangi
[Indonesia]
Pallaby, Dhaka
[Bangladesh]
Pallaby, Dhaka
[Bangladesh]
Pallaby, Dhaka
[Bangladesh]
Pallaby, Dhaka
[Bangladesh]
Denver
[USA]
Denver
[USA]
Pergamino
[Argentina]
Pergamino
[Argentina]
Kakuma
[Kenya]
Kakuma
[Kenya]
Future
Alternative models
Other features
fair.hotosm.org/
github.com/hotosm/fAIr-utilities
en.osm.town/@ciupava
These slides at https://ciupava.github.io/talks/HOTwebinar_Dec2024/slides.html